Sponsor Bağlantılar


Kimyanın Temel Kanunları Nelerdir?Hakkında Bilgi, Video Anlatım


Sponsor Bağlantı

Kimyanın Temel Kanunları Nelerdir?Hakkında Bilgi, Video Anlatım

Kimya Konu Anlatımlarımıza Kimyanın Temel KAnunları Nelerdir – Kimyanın Temel Kanunları Hakkında Bilgileri sizlere Yazılı ve Video Anlatım Olarak Sunarak devam ediyoruz arkadaşlar.

Sizlerde konumuza yorum kısmından Ekleme Yaparak Katkıda Bulunabilirsiniz.

Kimyanın Temel Kanunları Video Anlatımı

Yürürlükteki kurama göre, yanma, yanan nesnenin “flojiston” denen, ama ne olduğu bilinmeyen, gizemli bir madde çıkarması demekti. Odun kömürü gibi yandığında geriye en az kül bırakan nesneler flojiston bakımından en zengin nesnelerdi. Lavoisier yaptığı bir deneyde şu sonuca varır. Cıva oksidin ısı altında cıvaya dönüşmesiyle kaybettiği ağırlık ile çıkan gazın ağırlığı denkti. Bunun anlamı şuydu: yanma, yanan nesnenin flogiston salmasıyla değil, havanın etkili bölümüyle (yani oksijenle) birleşmesiyle gerçekleşmektedir.

Lavoisier’i unutulmaz yapan bir özelliği de nesnelerin kimyasal değişimlerini ölçmede gösterdiği olağanüstü duyarlılıktı. Bu özelliği ona “Kütlenin Korunumu Yasası” diye bilinen çok önemli bilimsel bir ilkeyi ortaya koyma olanağı sağlar. Lavoisier kimi kez kendi adıyla da anılan bu ilkeyi şöyle dile getirmiştir: “Madde yoktan var edilemediği gibi, vardan da yok edilemez. Sadece birinden ötekine dönüşe bilir”
Tarihçe

Kütlenin korunumu kanunun ilk kez Nasîrüddin Tûsî tarafından 13. yüzyıl ortaya atılmışsa da bu ilk sürümde eksiklikler mevcuttu; Maddenin yapısının değişebileceğini fakat yok olamayacağını yazmaktaydı.

Kütlenin korunumu kanunun ilk kez net bir şekilde tanımlanması 1789 tarihinde Lavoisier tarafından başarılabilmiştir. Nitekim bu sebepten ötürü bazen kendisinin modern kimyanın babası olduğu da söylenir. Bununla birlikte, Mikhail Lomonosov aslında benzeri fikirleri 1748′de ortaya atmış ve çeşitli deneyler sonucu kanıtlamıştı. Lavoisier’in çalışmasının öncülleri bununla da sınırlı değildir ve şu isimler daha erken tarihlerde benzeri fikirleri ortaya atmıştır: Joseph Black, Henry Cavendish ve Jean Rey.

Antoine Laurent Lavoisier (1743-1794) metal oksitlerinin, daha önce Joseph Priestley (1733-1804) ve Carl Wilhelm Scheele (1742-1786) tarafından keşfedilmiş bulunan oksijen ile metallerin verdiği bileşikler olduğunu kanıtlayıp, yanma ve oksitlenme olaylarının bugün bile geçerli olan açıklamasını yaparak kimyada devrim yaratmış; kimyasal adlandırma konusunda son derece değerli çalışmalarda bulunmuş; maddeye gerçek anlamını vererek elementin nicel tanımını yapmış; kapalı kaplarda yaptığı deneylerde, kimyasal tepkimeler sırasında kütlenin değişmediğini saptayarak kütlenin korunumu yasasını sunmuştur. Kimyaya nicel yöntemleri yerleştiren Lavoisier’in 1789′da yayınladığı “Traité Élémentaire de Chimie” (Temel Kimya İncelemesi) adlı yapıtı, fizikte Newton’un Principia’sına eşdeğer biçimde kimyada devrime yol açmıştır.
2. Sabit Oranlar Kanunu

Maddeleri bir birleriyle birleşme oranlarını tam olarak hesaplama işini; Joseph Louıs Proust(1754-1826) Fransız Kimyacı; Claude Louis Berthollet (1748-1821)Fransız Kimyacı; Jeremias Benjaim Richter (1762-1807) başardılar. Bu bilginler stokiyometrinin ilk prensiplerini ortaya koyan kişi olarak bilinirler. Yaptıkları çalışmalarda bileşikleri oluşturan elementlerin hep belli bir oranda birleştiklerini tespit ettiler. Bu şekilde “sabit oranlar kanunu” olarak bildiğimiz kanun bulunmuş oldu. Fakat henüz atom kavramı tam olarak bulunmadığı için ortaya atılan düşünceler biraz varsayım ve teoriden ibaretti. Ancak bizler bu gün biliyoruz ki; Bir bileşik hangi yolla elde edilirse edilsin, bileşiği oluşturan maddelerin( atomların) kütleleri arasında basit tam sayılarla ifade edilen sabit bir oran vardır. Bu orana “sabit oranlar kanunu” denir.

Bugün sabit oranlar yasası olarak bilinen yasaya göre “bir element başka bir elementle birleşerek bileşik oluşturduklarında bileşik içindeki elementlerin kütleleri oranı sabittir”. Buna göre; bir bileşik örneğin suyun 18 gramında 16 gram oksijen varken geri kalan 2 gramı hidrojendir. 9 gram su alınırsa bunun 8 gramı oksijen ve 1 gramı hidrojendir. Bu oran suyun ne şekilde elde edilmiş olura olsun kesinlikle değişmez
Karışımların bileşimleri istenilen oranda değiştirilebilir. Demir ile kükürdün oluşturduğu bir karışmaz miktarda demir, çok miktarda kükürt içerdiği gibi, bunun terside olabilir. Karışma bir fiziksel olaydır. Maddelerin özelliklerinin değişmediği bu olaylarda maddeler istenilen oranda karıştırılabilir.

Elementler, ancak belli kütle oranlarında birleşerek bileşik oluştururlar. Örneğin 7 gram demir ile 4 gram kükürt birleşerek 11 gram demir sülfür bileşiğini oluşturur. Sabit oranlar yasası bileşikleri karışımlardan ayıran bu önemli farkı belirtir. Hangi yolla elde edilmiş olursa olsun, bir bileşiği oluşturan elementlerin ağırlıkları arasında sabit bir oran vardır.[6]
Herhangi bir bileşiği oluşturan maddelerin kütleleri arasında daima sabit oran vardır.

Örnek: H2O bileşiğinde H/O kütlece oranı 2/16= 1/8 dir. ( H=1 O=16)

Örnek: CO2 bileşiğinde C/O= 12/32 = 6/16 = 3/8 (C=12)

Örnek: MgO bileşiğinde Mg/O = 24/ 16 = 12/8 = 6/4 = 3/2 ( Mg=24) [10]
Örnek: FeS → bileşiği 1 tane Fe + 1 tane S atomundan oluşmuştur. Öyle ise bu bileşikteki Fe/S kütleleri arasında =56/32 =7/4 gibi bir oran vardır. Bu aran FeS bileşiğinin sabit oranıdır.[1]

Örnek: Kalsiyum oksit bileşiğinde, kalsiyumun oksijene kütlece oranı, 5/2′dir.
a) 25 g kalsiyum ile 8 g oksijen tepkimeye sokuluyor. Hangi maddeden kaç gram artar ve kaç gram kalsiyum oksit oluşur?
b) Kütleleri birbirine eşit olan kalsiyum ve oksijen karışımının tepkimesinden 14 g kalsiyum oksit oluşuyor. Buna göre başlangıç karışımı kaç gramdır ve hangi maddeden kaç gram artar?

özüm:
a) 5 g kalsiyum ile 2g oksijen birleşirse 25 g kalsiyum ile 254/5 = 10 g oksijen birleşir. Elimizde 8 g oksijen olduğuna göre, oksijen yetmemektedir. Öyleyse bu tepkimede kalsiyumun tümü harcanmaz. Problem oksijen miktarı esas alınarak çözülmelidir. 2 g oksijen ile 5 g kalsiyum birleşirse; 8 g oksijen ile kalsiyum birleşir ve 25 20 = 5g Ca artar. Kalsiyum oksidin kütlesi, 20 + 8 = 28 gramdır.

b) 5 g kalsiyum, 2 g oksijenle birleşerek 7 g kalsiyum oksit oluştuğuna göre,14g bileşik oluşması için 10 g kalsiyum ile 4 g oksijen gerekir. İki maddeden eşit kütlede alındığından bu miktarlar, 4′er gram değil, 10′ar gram olmalıdır. Çünkü 4 gram oksijene karşılık en az 10 gram kalsiyum gerekmektedir. Öyleyse tepkimeye giren miktarlardan büyük olana yetecek kadar almak zorundayız. Buna göre başlangıçta toplam kütle, 10 + 10 = 20 gramdır. 10 g kalsiyum ile 4 g oksijen tepkimeye girdiğine göre, 10 4 = 6 g oksijen artar.[6]
3. Katlı Oranlar Kanunu

Aynı tür elementlerden oluşan iki farklı bileşikte elementlerden birinin sabit miktarına karşılık diğerinin değişen miktarına , başka bir deyişle de aralarında birden fazla bileşik oluşturan elementler arasında, birinin sabit miktarıyla, birleşen diğer elementin miktarları arasında tam sayılarla ifade edilen katlı orana katlı oran kanunu denir. John Dalton tarafından bulunmuştur.
Dalton, bir bakıma kimyayı ve kimyasal çözümlemeyi tanımlayan ilk kişidir. Ona göre, kimyanın başlıca işlev; “maddesel parçacıkları birbirinden ayırmak ya da birbiriyle birleştirmektir.” Onun sözünü ettiği bu parçacıklar maddenin, o zaman bölünmez, parçalanmaz sayılan en ufak öğeleri, yani atomlardı. J.Dalton, yaptığı çalışmaların sonucundan “iki element aralarında birden fazla bileşik oluşturuyorsa, bunlardan birinin sabit miktarıyla birleşen ikincisinin değişen miktarları arasında basit tam sayılı bir oran bulunur.” Bu şekilde “Katlı Oranlar Yasası” olarak bildiğimiz yasa bulunmuş oldu.

“Elementle; sabit oranları ya da katlı oranları sağlayan tanecikler, yani atomlar yoluyla kimyasal olaya katılırlar. Her elementin, kütle, büyüklük, kimyasal özellik yönünden kendine özgü ve özdeş yapılı atomları vardır.”

Dalton, o zamana kadar bulunan bazı atomlar belli geometrik işaretlerle de simgeledi. Ancak sembolleri çok kaba ve büyüktü. Dalton elementlerin molekül yapısını henüz düşünememişti: Dalton’dan sonra kimya biliminde süratli bir gelişme gözlenmeye başlandı.[1]

Örnek: H2O2 ile H2O bileşiklerinde H atomları sabitken O atomları arasındaki oran 2/1 yada ½ dir.

Örnek : SO2 ile SO3 de S atomları sabitken O atomları arasındaki oran 2/3 yada 3/2 dir.

Örnek: Fe2O3 ile Fe3O4 de Fe atomları sabitleştirilirse 3/ Fe2O3 2/ Fe3O4 O atomları arasındaki oran 9/8 yada 8/9 dur.

...

Not: Elementlerden biri sabitken diğeri mutlaka değişmelidir. Örneğin NO2 ile N2O4 arasında katlı oran yoktur. Çünkü N atomları eşitlenince O atomları da eşitlenmektedir.[3]
Örnek: Fe ile O elementleri arasında; FeO Fe2O3 ve Fe3O4 gibi bileşikler oluşmaktadır. Bunlar arasındaki katlı oranlara bakacak olursak: Fe2O3 ve Fe3O4 bileşiklerinde mesela Fe yi sabit tutarsak Fe2O3 yi 3 ile ve Fe3O4 ü de 2 ile çarpmamız gerekir. O zaman çarpalım…

3(Fe2 O3) Fe6 O9
———– = ———
2(Fe3 O4) Fe6 O8

burada Fe’ler sadeleşirse oksijenler arasındaki katlı oran 9/8 oranı elde edilir.

Bunun anlamı Fe2O3 teki 9 gram oksijene karşılık, ikinci bileşikte 8 gram oksijen vardır.
Katlı oranların uygulana bilemesi için;
Bileşiklerde yalnız iki element olmalı
Bileşiklerdeki elementler birbirinin aynı olmalı
Bileşiklerin basit formülleri aynı olmamalı
Katlı oran 1/1 olmamalı
ÖRNEK:
NO – N2O3Katlı oranlar kanununa uyar
NO2 – N2O4Katlı oranlar kanununa uymaz
NaCl – KClKatlı oranlar kanununa uymaz
H2SO4 – H2SO3 Katlı oranlar kanununa uymaz
FeO – Fe2O3 Katlı oranlar kanununa uyar
Tarihçe

1804 yılında bu yasayı bulan John Dalton, bileşiklerde elementler arasındaki kütle oranının korunmasına karşın bazen aynı elementlerin birbirleriyle birleştiklerinde farklı özellikler gösteren bileşikleri oluşturduğu gözlenmiştir. Örneğin karbon ve oksijenin birleşmesiyle özellikleri tamamen birbirinden farklı karbon dioksit ve karbon monoksit diye adlandırılan iki farklı ürün meydana gelir. Karbon monoksit oldukça zehirli bir gazken karbondioksit soluk alıp verirken dışarı attığımız zehirli olmayan bir gazdır ve yeşil bitkilerin yaşamını sürdürmesi için gereken en temel elemanlardan biridir.

Aslında oksijen ile hidrojenin birlikte oluşturdukları birbirinden farklı iki form vardır. Biri su, diğeri hidrojen peroksittir. Hidrojen peroksidin yaklaşık %3′lük su ile seyreltilerek hazırlanmış çözeltisi eczanelerde oksijenli su olarak satın alınabilen ticari bir üründür. Ayrıca özellikleri kesinlikle sudan çok farklıdır. Yalnızca karbon ve hidrojenden oluşmuş bileşiklerin sayısını ise tam olarak söylemek zordur. Bütün bu karmaşaya karşın Dalton şunu fark etti;

“Eğer bir element bir başka element ile birden fazla bileşik oluşturabiliyorsa elementlerden birinin sabit miktarı ile diğer elementtin değişen miktarları arasında basit ve tam sayılarla ifade edilebilen bir oran vardır.” ”

Örneğin karbon dioksit-karbon monoksit örneğine geri dönersek, 44 karbondioksitte 12 gram karbon ve 32 gram oksijen vardır. Karbonmonooksidin 28 gramında ise 12 gram karbon ve 16 gram oksijen vardır. Her iki bileşikteki karbon miktarı 12 gramı için birinde 32 diğerinde 16 gram oksijen vardır. Birinci bileşikteki oksijen kütlesinin ikinci bileşiktekine oranı 32/16=2 dir. Bu Dalton’a kendi adıyla anılan Dalton Atom Teorisi fikrini verdi.
4. Birleşen Hacim Oranları Kanunu

Gay-Lussac (1778-1850); aynı sıcaklık ve basınçta gazların, ancak belirli ve tamsayılı oranda tepkimeye girdiklerini gösterdi. Örneğin; N2 +3H2 → 2NH3 tepkimesinde 3 hacim hidrojen ile 1 hacim azot tepkimeye girerek 2hacim amonyak oluşturmuştur. Örneğin; N2 +O2 → 2NO tepkimesinde 1 hacim azot 1 hacim oksijen tepkimeye girerek 2 hacim azot monoksit oluşturmuştur. Anlaşıldığı gibi; Sabit sıcaklık ve basınçta, tepkimeye giren gaz maddelerin hacimleri arasında basit ve tam sayılarla ifade edilen bir oran vardır. Bu orana sabit hacim oranları kanunu denir.

Gay-Lussacav agadro hipotezinden de esinlenerek böylece molekül kavramına açıklık getiriyor ve hesaplamalara sokuyordu. Avagadro suyun formülünü; H + O → HO şeklinde düşünürken, Gay-lussak yaptığı çalışmalarla bunun H2 + O2 → H2O şeklinde olması gerektiğini savundu.

Çünkü suyun birleşme oranı 1/16 değil 1/8 di.

a) Kimyasal bir tepkimeye giren gazlarla, tepkimede oluşan gaz halindeki ürünlerin aynı koşullarda (aynı sıcaklık ve basınç) hacimleri arasında sabit bir oran vardır.

b) Aynı koşullarda gazların hacimleri mol sayıları ile doğru orantılıdır.
Örn; H2(g) + Cl2(g) ® 2HCl(g) tepkimesine göre, 1 mol H2 1 mol Cl22 gazı, 1 hacim Cl2 gazı ile birleşerek eşit koşullarda 2 hacim HCl gazı oluşturur.” İfadesi de kullanılabilir. ile birleşerek 2 mol HCl oluşturur.Hacimler mol sayıları ile doğru orantılı olduğundan, aynı olayı anlatmak için “1 hacim H. Aynı şekilde, N2(g) + 3H2(g) ® 2NH3(g) tepkimesine göre 1 hacim azot gazı 3 hacim hidrojen gazı ile birleşerek eşit koşullarda 2 hacim NH3 gazını oluşturur.” diyebiliriz.
Kataliz

Katalizör (Yunanca’dan κατάλυσις = çözülme), kimyevi bir tepkimenin hızını arttıran veya yavaşlatan maddeler. Katalizör terimi, 1835′te İsveçli kimyacı Jöns Jakob Berzelius tarafından ilk defa kullanıldı. Berzelius, katalizörün tepkimeye giren maddelerin bağlarını çözecek şekilde tesir ettiğini ve böylece tepkimenin daha hızlı bir şekilde meydana gelmesine yardım ettiğini kabul etti. Bazı katalizörler tepkimenin hızını yavaşlatır. Bunlara negatif katalizör denir. Buna rağmen katalizörlerin çoğu tepkime hızını arttırır ve tepkime hızını arttıran katalizörlere de pozitif katalizör denir.

Katalizörlerin karakterleri

Her tip katı, sıvı veya gaz madde katalizör olarak tesir edebilir. Buna rağmen katalitik tepkimeler çok tipik özellikler gösterdiğinden yalnız belirli maddeler belirli tepkimelere katalitik etki yapabilir.

İlk önceleri, katalizörlerin katıldıkları tepkime sırasında değişikliğe uğramadıkları düşünüldü. Sonradan bazı katalizörlerin tepkimeye iştirak ettiği, yani bir değişikliğe uğradığı, fakat bunların reaksiyon sonunda miktar ve şekil olarak yeniden ilk hallerine döndükleri tesbit edildi. Bazı katalizörlerin reaksiyon sırasında hiç olmazsa şekillerinin devamlı olarak değiştiği bilinmektedir.

Katalizörlerin genellikle küçük miktarları tesirlidir. Bir katalizör kendinin birkaç bin katı ağırlığındaki maddelerin tepkimesini katalize edebilir. Katalizör, tepkimenin hızını arttırırken tersinir (geri dönebilen veya çift yönlü) bir tepkimenin denge noktasına tesir etmez. Katalizör tepkime hızını arttırdığı için tepkimenin kısa zamanda dengeye gelmesini sağlar. Fakat tepkimeye giren maddelerin denge noktasındaki bağıl derişimlerini değiştirmez. Yani o tepkime katalizörsüz, meydana gelse ve dengeye ulaşsa, denge halinde iken mevcut olan tepkimeye giren madde miktarı, aynı tepkimenin katalizörle elde edilmiş denge halindeki miktarına eşitir.

Katalitik etkimenin mekanizması

Katalitik etkimenin gerçek mekanizması tam olarak bilinmemesine rağmen bunun en azından bazı durumlarda reaksiyona giren maddelerin katalizör yüzeyinin küçük bir kısmı üzerinde emildiği (absorblandığı) bir yüzeysel olay olduğu düşünülmektedir. Böyle bir olay, tepkimenin başlaması için gerekli olan aktif enerji miktarını herhangi bir şekilde azaltabilir. Böylece ilerlemenin daha hızlı olması sağlanır. Negatif katalizörler, zincirleme tepkimelerdeki bir basamağa etki ederek bunu takip eden basamakları durdururlar. Mesela katalizör, tepkime ortamındaki maddelerden biriyle birleşerek tepkimenin devamına mani olur. Aynı zamanda negatif katalizörler, pozitif katalizörlerle birleşerek onun tesirini yok edebilir. Pozitif ve negatif katalizörler bazı kirliliklerin etkisine maruz kalır ki o zaman katalizör zehirlenir, yani katalizörün etkisi ortadan kalkar. Bu şekildeki zehirler, katalizör yüzeyi üzerindeki aktif bölgeleri atıl hale getirebilecek şekilde etki edebilirler.

Katalizör tipleri

Çok bilinen katalizörler metalik bileşiklerin ve metallerin tozlarıdır. Katalizörler, bileşik ve tepkime tipine bağlı olarak sınıflandırılabilir. Mesela, sülfürik asit, hidrokarbonların izomerizasyonunda, platin, çift bağların hidrojenlendirilmesinde kullanılır. Hayvan ve bitki hücrelerinde bulunan enzimler, hayat için zaruri olan biyokimyevi tepkimeleri katalize ederler.

Katalitik işlemler modern sanayide (bilhassa esası kimyevi madde olan) ve petrol ürünlerinin elde edilmesinde yaygın olarak kullanılır.


Nasıl Buldular: 9 sınıf kimya birleşen hacim oranları kanunu videokimyanın temel kanunları hakkında bilgi9 sınıf kimya birleşen hacim oranları videoso2 lewis yapısı20 element hakkında kısa bilgiler9 sınıf kimyanın temel kanunları konu anlatımı video

Kimyanın Temel Kanunları Nelerdir?Hakkında Bilgi, Video Anlatım SerdarHan tarafından 29 Eylül 2011 tarihinde , Eğitim kategorisine eklenmiştir.
Sponsor Bağlantı
    yeni 10
Benzer Konular
Kimyanın Temel Kanunları Nelerdir?Hakkında Bilgi, Video Anlatım isimli bu konuyu ;
Google'de Ara
BlogSearch'te Ara
Buzzzy'de Ara
Twitter'da Ara
Bing'te Ara
İletişim

Sende Yorum Yaz

YORUM YAZMAK İÇİN ÜYE GİRİŞİ YAPMALISINIZ.

Facebook Grubumuza Katılın!